sin θ = 0 when θ = 0 ˚, 180˚, 360˚ and so on.
Maximum value of sin θ is 1 when θ = 90 ˚
Minimum value of sin θ is –1 when θ = 270 ˚
So, the range of values of sin θ is –1 ≤ sin θ ≤ 1
Maximum value of sinθ = 1
Minimum value of sinθ = – 1 where 0≤ θ ≤ 2π where π = 180º
Maximum value of asinθ = a
Minimum value of a sinθ = – a where 0≤ θ ≤ 2π where π = 180º, and a constant.
cos θ = 0 when θ = 90 ˚, 270˚ and so on.
Maximum value of cos θ is 1 when θ = 0 ˚, 360˚.
Minimum value of cos θ is –1 when θ = 180 ˚.
So, the range of values of cos θ is – 1 ≤ cos θ ≤ 1.
Maximum value of cosθ = 1
Minimum value of cosθ = – 1 where 0≤ θ ≤ 2π where π = 180º
Maximum value of b cosθ = b
Minimum value of bcosθ = – b where 0≤ θ ≤ 2π where π = 180º and b is constant.
tan θ = 0 when θ = 0 ˚, 180˚, 360˚. tan θ = 1 when θ = 45 ˚ and 225˚.
tan θ = –1 when θ = 135 ˚ and 315˚.
tan θ does not have any maximum or minimum values. The range of values of tan θ is – ∞ < tan θ < ∞
Type I
Maximum value of asinθ + bcosθ = √ (a2 + b2)
Minimum value of asinθ + bcosθ = -√ (a2 + b2)
Example – Find the minimum and maximum value of 3 sinθ + 4 cosθ ?
Ans-Minimum value = – √ (32 + 42) = -5
Maximum value = √ (32 + 42) = 5
Type II-
Find the minimum and maximum value of (sinθ.cosθ)n ?
Ans- Minimum value = (1/2)n
The maximum value can go up to infinity.
Example – Find the minimum value of sin4 θ cos4 θ
Minimum value of sin4 θ cos4 θ = Minimum value of (sinθ.cosθ)4= (1/2)4 = 1/16.
Type – III
a sin2 θ+ b cos2 θ
If a > b, Maximum value = a and Minimum value = b
If a < b, Maximum value = b and Minimum value = a
Example: Find the minimum and maximum values of 3 sin2 θ+ 5 cos2θ
First check, here a < b
So Maximum value = 5 and Minimum value = 3
Type IV:
a sin2θ + b cosec2θ, a cos2θ + b sec2θ, a tan2θ + b cot2θ
Minimum value = 2√(ab)
The maximum value can go up to infinity.
Example: Find the minimum value of 4 cos2θ + 9 sec2θ
Observe the case, so Minimum value = 2√(4 × 9) = 12
Example:
Minimum value of a sec2 θ+ b cosec2 θ?
We do not have a formula for this, lets continue
The given function can be written as
a (1 + tan2θ) + b (1 + cot2θ)
= a + b + a tan2 θ+ b cot2θ
= (a+b) + (a tan2θ + b cot2θ)
Now observe that we have the formula for finding min value of a tan2θ + b cot2θ
So here minimum value is (a+b) + 2√(ab)